MATH 5061 Problem Set 6¹ Due date: May 1, 2020

Problems: (Please either type up your assignment or scan a copy of your written assignment into ONE PDF file and send it to me by email on/before the due date. Please remember to write down your name and SID. Questions marked with a † is optional.)

- 1. Prove that on any oriented closed (i.e. compact without boundary) Riemannian manifold (M^m, g) , the Hodge Laplacian Δ commutes with d, δ and * on $\Omega^p(M)$ for any p.
- 2. Let (Σ^2, g) be a closed oriented Riemannian surface with the induced complex structure J from g. Prove that for any vector field V on Σ , there exists a decomposition

$$V = \nabla f + J(\nabla g) + V_H$$

where $f, g \in C^{\infty}(\Sigma)$, and that locally $V_H = \nabla h$ for some (locally defined) harmonic function h.

3. Prove that for any closed *p*-form α_0 on a closed oriented Riemannian manifold (M^m, g) , the harmonic representative α_H is the unique minimizer within its de Rham cohomology class $[\alpha_0] \in H^p_{dR}(M)$ for the Dirichlet energy:

$$E(\alpha) := \|\alpha\|_{L^2}^2 = \int_M \langle \alpha, \alpha \rangle \ dV_g.$$

4. Let (M^m, g) be a closed Riemannian manifold. Let $\Gamma(S^2M)$ denote the space of symmetric (0, 2)-tensors on M. Consider the differential operator $S : \Omega^1(M) \to \Gamma(S^2M)$ defined by

$$S(\alpha) := \mathcal{L}_{\alpha^{\sharp}} g$$

where α^{\sharp} is the vector field dual to α .

- (a) Prove that $\langle S\alpha, h \rangle_{L^2} = 2 \langle \alpha, \delta h \rangle_{L^2}$ for any $\alpha \in \Omega^1(M)$, $h \in \Gamma(S^2M)$. Here, $\delta : \Gamma(S^2M) \to \Omega^1(M)$ is the divergence of a symmetric (0, 2)-tensor.
- (b) Denote $D: \Omega^1(M) \to \Gamma(T_2^0 M)$ be the connection as defined in Q.2 of Problem Set 3, and D^* be its adjoint with respect to the L^2 inner product. Prove that for any $\alpha \in \Omega^1(M)$,

$$\delta S(\alpha) = D^* D\alpha + d\delta\alpha - \operatorname{Ric}(\alpha^{\sharp}, \cdot).$$

- (c) Use (b) to prove that the isometry group Isom(M) is finite if (M, g) has strictly negative Ricci curvature.
- 5. (†) Let (M^m, g) be a compact Riemannian manifold with smooth boundary. Suppose
 - (i) M has non-negative Ricci curvature, i.e. $\operatorname{Ric} \geq 0$;
 - (ii) The boundary ∂M has positive mean curvature (w.r.t. the outward unit normal ν), i.e. for any orthonormal basis e_1, \dots, e_{m-1} at ∂M ,

$$H = \sum_{i=1}^{m-1} \langle D_{e_i} \nu, e_i \rangle > 0.$$

Prove the inequality

$$\int_{\partial M} \frac{1}{H} \, dA \ge \frac{m}{m-1} \mathrm{Vol}(\mathbf{M})$$

where dA is the (m-1)-dimensional volume form on ∂M and Vol(M) is the volume of (M^m, g) . Show that equality is attained if and only if (M^m, g) is isometric to an *m*-dimensional Euclidean ball.

¹Last revised on April 27, 2020